Кольцо целых. Кольцо целых чисел. Теорема о делении с остатком. НОК и НОД чисел. Методика Мы пользуемся обычным для колец определением наибольшего общего делителя. НОД"ом двух гауссовых чисел называется такой их общий делитель, который делится на любой др

Натуральные числа не являются кольцом, так как 0 не является натуральным числом, а также для натуральных чисел нет натуральных противоположных им. Структура, образуемая натуральными числами, называется полукольцом. Более точно,

Полукольцом называется коммутативная полугруппа по сложению и полугруппа по умножению, в которой операции сложения и умножения связаны дистрибутивными законами.

Введём теперь строгие определения целых чисел и докажем их эквивалентность. Исходя из представлений об алгебраических структурах и того факта, что множество натуральных числе является полукольцом, но не является кольцом, можно ввести следующее определение:

Определение 1. Кольцом целых чисел называется минимальное кольцо, содержащее в себе полукольцо натуральных чисел.

Данное определение ничего не сообщает о внешнем виде таких чисел. В школьном курсе целые числа определяются как натуральные числа, им противоположные и 0. Данное определение также можно взять за основу для построения строгого определения.

Определение 2. Кольцом целых чисел называется кольцо, элементами которого являются натуральные числа, им противоположные и 0 (и только они).

Теорема 1 . Определения 1 и 2 эквивалентны.

Доказательство : Обозначим через Z 1 кольцо целых чисел в смысле определения 1, а через Z 2 – кольцо целых чисел в смысле определения 2. В начале докажем, что Z 2 включается в Z 1 . Действительно, все элементы Z 2 это либо натуральные числа (они принадлежат Z 1 , так как Z 1 содержит в себе полукольцо натуральных чисел), либо им противоположные (они тоже принадлежат Z 1 , так как Z 1 кольцо, а значит для каждого элемента этого кольца существует противоположный, и для каждого натурального n Î Z 1 , –n также принадлежит Z 1), либо 0 (0 Î Z 1 , так как Z 1 кольцо, а в любом кольце имеется 0), таким образом, любой элемент из Z 2 принадлежит также и Z 1 , а значит Z 2 Í Z 1 . С другой стороны, Z 2 содержит в себе полукольцо натуральных чисел, а Z 1 является минимальным кольцом, содержащим в себе натуральные числа, то есть не может содержать в себе никакого другого кольца, удовлетворяющего этому условию. Но мы показали, что оно содержит в себе Z 2 , а значит Z 1 = Z 2 . Теорема доказана.

Определение 3. Кольцом целых чисел называется кольцо, элементами которого являются все возможные элементы, представимые в виде разности b – а (все возможные решения уравнения a + x = b), где а и b – произвольные натуральные числа.

Теорема 2 . Определение 3 эквивалентно двум предыдущим.

Доказательство : Обозначим через Z 3 кольцо целых чисел в смысле определения 3, а через Z 1 = Z 2 , как и раньше, – кольцо целых чисел в смысле определения 1 и 2 (их равенство уже установлено). Сначала докажем, что Z 3 включается в Z 2 . Действительно, все элементы Z 3 можно представить в виде некоторых разностей натуральных чисел b – а. Для любых двух натуральных чисел по теореме о трихотомии возможно три варианта:



В этом случае разность b – а также является числом натуральным и потому принадлежит Z 2 .

В этом случае разность двух равных между собой элементов обозначим символом 0. Докажем, что это действительно нуль кольца, то есть нейтральный элемент относительно сложения. Для этого воспользуемся определением разности a – a = x ó a = a + x и докажем, что b + x = b для любого натурального b. Для доказательства достаточно прибавить к правой и левой части равенства a = a + x элемент b, а затем воспользоваться законом сокращения (все эти действия можно выполнять исходя из известных свойств колец). Нуль же принадлежит Z 2 .

В этом случае разность a – b есть число натуральное, обозначим

b – a = – (a – b). Докажем, что элементы a – b и b – a действительно являются противоположными, то есть в сумме дают нуль. В самом деле, если обозначить a – b = х, b – a = у, то получим, что a = b + х, b = у + a. Складывая почленно полученные равенства и сокращая b, получим a = х + у + a, то есть х + у = а – а = 0. Таким образом a – b = – (b – a) является числом противоположным натуральному, то есть вновь принадлежит Z 2 . Таким образом, Z 3 Í Z 2 .

С другой стороны Z 3 содержит в себе полукольцо натуральных чисел, так как любое натуральное число n всегда можно представить как

n = n / – 1 Î Z 3 ,

а значит Z 1 Í Z 3 , так как Z 1 является минимальным кольцом, содержащим в себе натуральные числа. Пользуясь уже доказанным фактом, что Z 2 = Z 1 , получаем Z 1 = Z 2 = Z 3 . Теорема доказана.

Хотя на первый взгляд может показаться, что никаких аксиом в перечисленных определениях целых чисел нет, данные определения являются аксиоматическими, так как во всех трёх определениях говорится, что множество целых чисел является кольцом. Поэтому аксиомами в аксиоматической теории целых чисел служат условия из определения кольца.

Докажем, что аксиоматическая теория целых чисел непротиворечива . Для доказательства необходимо построить модель кольца целых чисел, пользуясь заведомо непротиворечивой теорией (в нашем случае это может быть только аксиоматическая теория натуральных чисел).

Согласно определению 3, каждое целое число представимо в виде разности двух натуральных z = b – а. Сопоставим каждому целому числу z соответствующую пару . Недостатком данного соответствия является его неоднозначность. В частности, числу 2 соответствуют и пара <3, 1 >, и пара <4, 2>, а также множество других. Числу 0 соответствуют и пара <1, 1>, и пара <2,2>, и пара <3, 3>, и так далее. Избежать этой проблемы помогает понятие эквивалентности пар . Будем говорить, что пара эквивалентна паре , если a +d = b + c (обозначение: @ ).

Введённое отношение является рефлексивным, симметричным и транзитивным (доказательство предоставляется читателю).

Как и всякое отношение эквивалентности, данное отношение порождает разбиение множества всевозможных пар натуральных чисел на классы эквивалентности, которые мы будем обозначать как [] (каждый класс состоит из всех пар эквивалентных паре ). Теперь можно каждому целому числу поставить в соответствие вполне определённый класс эквивалентных между собой пар натуральных чисел. Множество таких классов пар натуральных чисел и можно использовать в качестве модели целых чисел. Докажем, что все аксиомы кольца выполняются в этой модели. Для этого необходимо ввести понятия сложения и умножения классов пар. Сделаем это по следующим правилам:

1) [] + [] = [];

2) [] × [] = [].

Покажем, что введенные определения корректны, то есть не зависят от выбора конкретных представителей из классов пар. Иными словами, если эквивалентны пары @ и @ , то эквивалентны и соответствующие суммы и произведения @ , равно как и @ .

Доказательство : Применим определение эквивалентности пар:

@ ó а + b 1 = b + a 1 (1),

@ ó с + d 1 = d + c 1 (2).

Почленно сложив равенства (1) и (2), получим:

а + b 1 + с + d 1 = b + a 1 + d + c 1 .

Все слагаемые в последнем равенстве – натуральные числа, поэтому мы в праве применить коммутативный и ассоциативный законы сложения, что приводит нас к равенству

(а + с) + (b 1 + d 1)= (b + d) + (a 1 + c 1),

которое равносильно условию @ .

Для доказательства корректности умножения, равенство (1) умножим на с, получим:

ас + b 1 с= bс + a 1 с.

Затем перепишем равенство (1) в виде b + a 1 = а + b 1 и умножим на d:

bd + a 1 d = аd + b 1 d.

Почленно сложим полученные равенства:

ас + bd + a 1 d + b 1 с = bс + аd + b 1 d + a 1 с,

что означает, что @ (иными словами, здесь мы доказали, что × @ ).

Затем ту же процедуру проделаем с равенством (2), только умножать его будем на а 1 и b 1 . Получим:

а 1 с + а 1 d 1 = а 1 d + а 1 c 1

b 1 d + b 1 c 1 = b 1 с + b 1 d 1 ,

а 1 с + b 1 d + b 1 c 1 + а 1 d 1 = а 1 d + b 1 d + b 1 c 1 + а 1 c 1 ó

ó @

(здесь мы доказали, что × @ ). Пользуясь свойством транзитивности отношения эквивалентности пар, приходим к требуемому равенству @ равносильному условию

× @ .

Таким образом, корректность введённых определений доказана.

Далее непосредственно проверяются все свойства колец: ассоциативный закон сложения и умножения для классов пар, коммутативный закон сложения, дистрибутивные законы. Приведем в качестве примера доказательство ассоциативного закона сложения:

+ ( +) = + = .

Так как все компоненты пар числа натуральные

= <(a + c) +m), (b + d) +n)> =

= <(a + c), (b + d)> + = ( + ) +.

Остальные законы проверяются аналогично (заметим, что полезным приёмом может служить отдельное преобразование левой и правой части требуемого равенства к одному и тому же виду).

Необходимо также доказать наличие нейтрального элемента по сложению. Им может служить класс пар вида [<с, с>]. Действительно,

[] + [] = [] @ [], так как

а + c + b = b + c + a (справедливо для любых натуральных чисел).

Кроме того, для каждого класса пар [] имеется противоположный к нему. Таким классом будет класс []. Действительно,

[] + [] = [] = [] @ [].

Можно также доказать, что введённое множество классов пар есть коммутативное кольцо с единицей (единицей может служить класс пар []), и что все условия определений операций сложения и умножения для натуральных чисел, сохраняются и для их образов в данной модели. В частности, следующий элемент для натуральной пары разумно ввести по правилу:

[] / = [].

Проверим, пользуясь данным правилом, справедливость условий С1 и С2 (из определения сложения натуральных чисел). Условие С1 (а + 1 = а /) в данном случае перепишется в виде:

[] + [] =[] / = []. Действительно,

[] + [] = [] = [], так как

a + c / +b = a + b + 1 + c = b + c + a +1 = b + с + a /

(ещё раз напомним, что все компоненты натуральные).

Условие С2 будет иметь вид:

[] + [] / = ([] + []) / .

Преобразуем отдельно левую и правую части данного равенства:

[] + [] / = [] + [] = [] / .

([] + []) / = [] / =[<(a + c) / , b + d>] =[].

Таким образом, мы видим, что левые и правые части равны, значит условие С2 справедливо. Доказательство условия У1 предоставляется читателю. условие У2 является следствием дистрибутивного закона.

Итак, модель кольца целых чисел построена, а, следовательно, аксиоматическая теория целых чисел непротиворечива, если непротиворечива аксиоматическая теория натуральных чисел.

Свойства операций над целыми числами :

2) а×(–b) = –a×b = –(ab)

3) – (– a) = a

4) (–a)×(–b) = ab

5) a×(–1) = – a

6) a – b = – b + a = – (b – a)

7) – a – b = – (a +b)

8) (a – b) ×c = ac – bc

9) (a – b) – c = a – (b + c)

10) a – (b – c) = a – b + c.

Доказательства всех свойств повторяют доказательства соответствующих свойств для колец.

1) а + а×0 = а×1 + а×0 = a ×(1 + 0) = a×1 = а, то есть а×0 является нейтральным элементом по сложению.

2) а×(–b) + ab = a(–b + b) = a×0 = 0, то есть элемент а×(–b) является противоположным к элементу а×b.

3) (– a) + a = 0 (по определению противоположного элемента). Аналогично (– a) +(– (– a)) = 0. Приравнивая левые части равенств и применяя закон сокращения, получим – (– a) = а.

4) (–a)×(–b) = –(a×(–b)) = –(–(а×b)) = ab.

5) a×(–1) + а = a×(–1) + a×1 = a×(–1 + 1) = a×0 = 0

a×(–1) + а = 0

a×(–1) = –а.

6) По определению разности a – b есть такое число х, что а = х + b. Прибавляя к правой и левой части равенства –b слева и пользуясь коммутативным законом, получаем первое равенство.

– b + a + b – a = –b + b + а – a = 0 + 0 = 0, что доказывает второе равенство.

7) – a – b = – 1×a – 1×b = –1×(a +b) = – (a +b).

8) (a – b) ×c = (a +(–1)× b) ×c = ac +(–1)×bc = ac – bc

9) (a – b) – c = х,

a – b = х + c,

a – (b + c) = х, то есть

(a – b) – c = a – (b + c).

10) a – (b – c) = a + (– 1)×(b – c) = a + (– 1×b) + (–1)× (– c) = a – 1×b + 1×c = = a – b + c.

Задания для самостоятельного решения

№ 2.1. В правом столбце таблицы найти пары эквивалентные парам, приведённым в левом столбце таблицы.

а) <7, 5> 1) <5, 7>
б) <2, 3> 2) <1, 10>
в) <10, 10> 3) <5, 4>
г) <6, 2> 4) <15, 5>
5) <1, 5>
6) <9, 9>

Для каждой пары указать ей противоположную.

№ 2.2. Вычислить

а) [<1, 5>] + [ <3, 2>]; б)[<3, 8>] + [<4, 7>];

в) [<7, 4>] – [<8, 3>]; г) [<1, 5>] – [ <3, 2>];

д) [<1, 5>] × [ <2, 2>]; е) [<2, 10>]× [<10, 2>].

№ 2.3. Для модели целых чисел, описанной в данном разделе, проверить коммутативный закон сложения, ассоциативный и коммутативный законы умножения, дистрибутивные законы.

Примеры

a + b i {\displaystyle a+bi} где a {\displaystyle a} и b {\displaystyle b} рациональные числа, i {\displaystyle i} - мнимая единица . Такие выражения можно складывать и перемножать по обычным правилам действий с комплексными числами , и у каждого ненулевого элемента существует обратный, как это видно из равенства (a + b i) (a a 2 + b 2 − b a 2 + b 2 i) = (a + b i) (a − b i) a 2 + b 2 = 1. {\displaystyle (a+bi)\left({\frac {a}{a^{2}+b^{2}}}-{\frac {b}{a^{2}+b^{2}}}i\right)={\frac {(a+bi)(a-bi)}{a^{2}+b^{2}}}=1.} Из этого следует, что рациональные гауссовы числа образуют поле, являющееся двумерным пространством над (то есть квадратичным полем).
  • Более общо, для любого свободного от квадратов целого числа d {\displaystyle d} Q (d) {\displaystyle \mathbb {Q} ({\sqrt {d}})} будет квадратичным расширением поля Q {\displaystyle \mathbb {Q} } .
  • Круговое поле Q (ζ n) {\displaystyle \mathbb {Q} (\zeta _{n})} получается добавлением в Q {\displaystyle \mathbb {Q} } примитивного корня n -й степени из единицы. Поле должно содержать и все его степени (то есть все корни n -й степени из единицы), его размерность над Q {\displaystyle \mathbb {Q} } равняется функции Эйлера φ (n) {\displaystyle \varphi (n)} .
  • Действительные и комплексные числа имеют бесконечную степень над рациональными, поэтому они не являются числовыми полями. Это следует из несчетности: любое числовое поле является счётным .
  • Поле всех алгебраических чисел A {\displaystyle \mathbb {A} } не является числовым. Хотя расширение A ⊃ Q {\displaystyle \mathbb {A} \supset \mathbb {Q} } алгебраично, оно не является конечным.

Кольцо целых числового поля

Поскольку числовое поле является алгебраическим расширением поля Q {\displaystyle \mathbb {Q} } , любой его элемент является корнем некоторого многочлена с рациональными коэффициентами (то есть является алгебраическим). Более того, каждый элемент является корнем многочлена с целыми коэффициентами, так как можно домножить все рациональные коэффициенты на произведение знаменателей. Если же данный элемент является корнем некоторого унитарного многочлена с целыми коэффициентами, он называется целым элементом (или алгебраическим целым числом). Не все элементы числового поля целые: например, легко показать что единственные целые элементы Q {\displaystyle \mathbb {Q} } - это обычные целые числа .

Можно доказать, что сумма и произведение двух алгебраических целых чисел - снова алгебраическое целое число, поэтому целые элементы образуют подкольцо числового поля K {\displaystyle K} , называемое кольцом целых поля K {\displaystyle K} и обозначаемое . Поле не содержит делителей нуля и это свойство наследуется при переходе к подкольцу, поэтому кольцо целых целостно ; поле частных кольца O K {\displaystyle {\mathcal {O}}_{K}} - это само поле K {\displaystyle K} . Кольцо целых любого числового поля обладает следующими тремя свойствами: оно целозамкнуто , нётерово и одномерно . Коммутативное кольцо с такими свойствами называется дедекиндовым в честь Рихарда Дедекинда .

Разложение на простые и группа классов

В произвольном дедекиндовом кольце существует и единственно разложение ненулевых идеалов в произведение простых . Однако не любое кольцо целых удовлетворяет свойству факториальности : уже для кольца целых квадратичного поля O Q (− 5) = Z [ − 5 ] {\displaystyle {\mathcal {O}}_{\mathbb {Q} ({\sqrt {-5}})}=\mathbb {Z} [{\sqrt {-5}}]} разложение не единственно:

6 = 2 ⋅ 3 = (1 + − 5) (1 − − 5) {\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})(1-{\sqrt {-5}})}

Введя на этом кольце норму, можно показать, что эти разложения действительно различны, то есть одно нельзя получить из другого умножением на обратимый элемент .

Степень нарушения свойства факториальности измеряют при помощи группы классов идеалов , эта группа для кольца целых всегда конечна и её порядок называют числом классов.

Базисы числового поля

Целый базис

Целый базис числового поля F степени n - это множество

B = {b 1 , …, b n }

из n элементов кольца целых поля F , такое что любой элемент кольца целых O F поля F можно единственным способом записать как Z -линейную комбинацию элементов B ; то есть для любого x из O F существует и единственно разложение

x = m 1 b 1 + … + m n b n ,

где m i - обычные целые числа. В этом случае любой элемент F можно записать как

m 1 b 1 + … + m n b n ,

где m i - рациональные числа. После это целые элементы F выделяются тем свойством, что это в точности те элементы, для которых все m i целые.

Используя такие иструменты как локализация и эндоморфизм Фробениуса , можно построить такой базис для любого числового поля. Его построение является встроенной функцией во многих системах компьютерной алгебры .

Степенной базис

Пусть F - числовое поле степени n . Среди всех возможных базисов F (как Q -векторного пространства), существуют степенные базисы, то есть базисы вида

B x = {1, x , x 2 , …, x n −1 }

для некоторого x F . Согласно теореме о примитивном элементе , такой x всегда существует, его называют примитивным элементом данного расширения.

Норма и след

Алгебраическое числовое поле является конечномерным векторным пространством над Q {\displaystyle \mathbb {Q} } (обозначим его размерность за n {\displaystyle n} ), и умножение на произвольный элемент поля является линейным преобразованием этого пространства. Пусть e 1 , e 2 , … e n {\displaystyle e_{1},e_{2},\ldots e_{n}} - какой-нибудь базис F , тогда преобразованию x ↦ α x {\displaystyle x\mapsto \alpha x} соответствует матрица A = (a i j) {\displaystyle A=(a_{ij})} , определяемая условием

α e i = ∑ j = 1 n a i j e j , a i j ∈ Q . {\displaystyle \alpha e_{i}=\sum _{j=1}^{n}a_{ij}e_{j},\quad a_{ij}\in \mathbf {Q} .}

Элементы этой матрицы зависят от выбора базиса, однако от него не зависят все инварианты матрицы, такие как определитель и след . В контексте алгебраических расширений, определитель матрицы умножения на элемент называется нормой этого элемента (обозначается N (x) {\displaystyle N(x)} ); след матрицы - следом элемента (обозначается Tr (x) {\displaystyle {\text{Tr}}(x)} ).

След элемента является линейным функционалом на F :

Tr (x + y) = Tr (x) + Tr (y) {\displaystyle {\text{Tr}}(x+y)={\text{Tr}}(x)+{\text{Tr}}(y)} и Tr (λ x) = λ Tr (x) , λ ∈ Q {\displaystyle {\text{Tr}}(\lambda x)=\lambda {\text{Tr}}(x),\lambda \in \mathbb {Q} } .

Норма является мультипликативной и однородной функцией:

N (x y) = N (x) ⋅ N (y) {\displaystyle N(xy)=N(x)\cdot N(y)} и N (λ x) = λ n N (x) , λ ∈ Q {\displaystyle N(\lambda x)=\lambda ^{n}N(x),\lambda \in \mathbb {Q} } .

В качестве исходного базиса можно выбрать целый базис , умножению на целое алгебраическое число (то есть на элемент кольца целых ) в этом базисе будет соответствовать матрица с целыми элементами. Следовательно, след и норма любого элемента кольца целых являются целыми числами.

Пример использования нормы

Пусть d {\displaystyle d} - - целый элемент, так как он является корнем приведенного многочлена x 2 − d {\displaystyle x^{2}-d} ). В этом базисе умножению на a + b d {\displaystyle a+b{\sqrt {d}}} соответствует матрица

(a d b b a) {\displaystyle {\begin{pmatrix}a&db\\b&a\end{pmatrix}}}

Следовательно, N (a + b d) = a 2 − d b 2 {\displaystyle N(a+b{\sqrt {d}})=a^{2}-db^{2}} . На элементах кольца эта норма принимает целые значения. Норма является гомоморфизмом мультипликативной группы Z [ d ] {\displaystyle \mathbb {Z} [{\sqrt {d}}]} на мультипликативную группу Z {\displaystyle \mathbb {Z} } , поэтому норма обратимых элементов кольца может быть равна только 1 {\displaystyle 1} или − 1 {\displaystyle -1} . Для того, чтобы решить уравнение Пелля a 2 − d b 2 = 1 {\displaystyle a^{2}-db^{2}=1} , достаточно найти все обратимые элементы кольца целых (также называемые единицами кольца ) и выделить среди них имеющие норму 1 {\displaystyle 1} . Согласно теореме Дирихле о единицах , все обратимые элементы данного кольца являются степенями одного элемента (с точностью до умножения на − 1 {\displaystyle -1} ), поэтому для нахождения всех решений уравнения Пелля достаточно найти одно фундаментальное решение.

См. также

Литература

  • Х. Кох. Алгебраическая теория чисел . - М. : ВИНИТИ , 1990. - Т. 62. - 301 с. - (Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления».).
  • Чеботарев Н.Г. Основы теории Галуа. Часть 2. - М. : Едиториал УРСС, 2004.
  • Вейль Г. Алгебраическая теория чисел. Пер. с англ.. - М. : Едиториал УРСС, 2011.
  • Serge Lang , Algebraic Number Theory, second edition, Springer, 2000

Опр. Кольцо K называется кольцом целых чисел, если аддитивная группа кольца K является аддитивной группой целых чисел и умножение в кольце K коммутативно и продолжает умножение натуральных чисел (в системе N натуральных чисел).

Т1. Пусть - аддитивная группа целых чисел, есть естественное умножение в ней и 1 – единица системы N натуральных чисел. Тогда алгебра Z=является кольцом целых чисел.

Док-во. Покажем, что алгебра Z есть коммутативное кольцо. По условию, алгебра - аддитивная группа кольца – есть абелева группа, как аддитивная группа целых чисел.

Пусть a, b, c – произвольные элементы множества Z. Их можно представить в виде радости натуральных чисел. Пусть (1) a=m-n, b=p-q, c=r-s (m, n, p, q, r, s N).

Естественное умножение в Z определяется формулой (2) a*b=(m-n)*(p-q)=(mp+nq)-(mq+np).

Естественное умножение коммутативно, так как b*a= (p-q)*(m-n)=(pm+qn)-(pn+qm), и коммутативно сложение и умножение натуральных чисел.

Естественное умножение ассоциативно. В самом деле, в силу (1) и (2) имеем:

a*(b*c)=(m-n)[(p-q)(r-s)]=(m-n)[(pr+qs)-(ps-qr)]=(mpr+mqs+nps+nqr)-(mps+mqr+npr+nqs);

(a*b)*c=[(m-n)(p-q)](r-s)=[(mp+nq)-(mq+np)](r-s)=(mpr+nqr+mqs+nps)-(mps+nqs+mqr+npr).

Следовательно, в силу коммутативности сложения натуральных чисел a*(b*c)= (a*b)*c.

Элемент 1 является нейтральным относительно естественного умножения. В самом деле, для любого a из 2 имеем a*1=(m-n)(1-0)=m*1-n*1=m-n=a.

Следовательно, алгебра является коммутативным моноидом.

Опр. Если для целых чисел aи bсуществует такое натуральное число k, что a+k=bи k 0,то говорят, что «a меньше или b», и пишут ab тогда и только тогда, когда b

Т2. Пусть Z=кольцо целых чисел. Тогда: 1) для любых целых чисел a и b выполняется одно и только одно из трех услоий: a

2) для любого целого числа a выполняется одно и только одно из трех условий: a<0, a=0, 0

3) отношение < монотонно относительно сложения, т.е. для любых целых a, bи c

a

4) отношение <монотонно относительно умножения, т.е. для любых целых a, bи с

если a0, то ac

Т. о делении с остатком. Пусть a – целое число и b – натуральное число, отличное от нуля. Разделить число a и b с остатком – значит представить его в виде a=bq+r, где 0 r

Деление с остатком всегда выполнимо, а неполное частное и остаток однозначно определяются делимым и делителем.

Т. Для любых целых чисел a, bпри b>0существует единственная пара целых чисел qи r, удовлетворяющая условиям: (1) a=bq+rи 0 r

Док-во. Докажем, что существует хотя бы одна пара чисел q, r удовлетворяющая условиям (1). Вначале рассмотрим случай, когда a – натуральное число. Фиксируем b и индукцией по a докажем, что (2) существует пара целых чисел q, r, удовлетворяющая (1).

Для a=0 утверждение (2) верно, так как 0=b*0+0. Предположим, что (2) верно для a=n, т.е. существуют целые q, rтакие, что (3) n=bq+rи 0 r

Наибольший общий делитель. Целое число c называется общим делителем целых чисел a 1 , …, a n , если cесть делитель каждого из этих чисел.

Опр. Наибольшим общим делителем целых чисел a 1 , …, a n называется такой их общий делитель, который делится на любой общий делитель этих чисел.

Целые числа a 1 , …, a n называется взаимно простыми, если их наибольший общий делитель чисел равен единице.

НОД чисел a 1 , …, a n обозначается НОД(a 1 , …, a n), положительный НОД этих чисел обозначается нод(a 1 , …, a n).

След-ие 1. Если d есть НОД целых чисел a 1 , …, a n , то множество всех общих делителей этих чисел совпадает с множеством всех делителей числа d.

След-ие 2. Любые два НОД целых чисел a 1 , …, a n ассоциированы, т.е. могут отличаться только знаком. Если d есть НОД чисел a 1 , …, a n , то число (-d) также есть НОД этих чисел.

Алгоритм Евклида. Способ нахождения НОД двух целых чисел.

Предложение. Пусть aи b–два целых числа, b≠0 и (1) a=bq+r (0 r<|b|).

Тогда нод(a,b)=нод(b,r).

Док-во. Из (1) следует, что любой общий делитель чисел aи bесть делитель числа r=a-bqи любой общий делитель чисел bи rесть делитель числа a. Поэтому множество всех общих делителей чисел aи bсовпадает с множеством всех общих делителей чисел bи r. Отсюда следует, что положительный общий делитель чисел aи bсовпадает с положительным общим делителем чисел bи r, т.е. нод(a,b)=нод(b,r).



Если b|a, где b≥1, то очевидно, нод(a,b)=b. Для нахождения нод двух целых чисел применяют способ «последовательного деления», называемый алгоритмом Евклида. Сущность этого способа состоит в том, что в силу доказанного выше предложения задача нахождения нод чисел a и bсводится к более простой задаче нахождения нод чисел bи r, где 0≤r<|b|. Если r=0, то нод(a,b)=b. Если же r≠0, то рассуждения повторяем, отправляясь от bи r. В результате получим цепочку равенств.

Если a=0, то b=0*c=0 и теорема верна. Если же a≠0, то из (1) следует cd=1. По теореме, из равенства cd=1 следует, что d= 1. Кроме того, a=bd; следовательно, a= b. Доказано.

Наименьшее общее кратное. Целое число cназывается общим кратным целых чисел a 1 , …, a n , если оно делится на каждое из этих чисел.

Опр. Наименьшим общим кратным целых чисел a 1 , …, a n называется такое их общее кратное, которое делит любое общее кратное этих чисел. Об-ие: НОК(a 1 , …, a n). Положительное наименьшее общее кратное чисел a 1 , …, a n , отличных от нуля, об-ся через .

Сл-ие. Любые два наименьших общих кратных целых чисел a 1 , …, a n ассоциированы в Z, т.е. могут отличаться только знаком. Если число mесть НОК(a 1 , …, a n), то и число (-m) есть НОК(a 1 , …, a n).

Сл-ие. Если m – наименьшее общее кратное чисел a 1 , …, a n , то множество всех общих кратных этих чисел совпадает с множеством всех кратных числа m.

Как уже отмечалось, кольцо имеет перед полукольцом то преимущество, что в кольце однозначно разрешимо уравнение а + х = Ь для любых элементов кольца а и Ь. Это, в частности, и отличает кольцо целых чисел от полукольца натуральных чисел. Возможность всегда однозначно решить такое уравнение позволяет определить в кольце новую операцию - вычитание.

3.1.5. Определение. Пусть дано кольцо (К, +, ?). Для любых а,ЬеК определим b-а как решение уравнения а + х = Ь. Отображение КхК К , сопоставляющее всякой упорядоченной паре элементов (Ь>а) элемент b-а , называется вычитанием , а элемент b-а называется разностью элементов baa.

Непосредственной проверкой убеждаемся, что элемент Ь + (-а) является решением уравнения а + х = Ь, а из единственности решения получаем b-a = b + (-а).

Используя понятие разности элементов кольца, установим еще одну характеризацию системы целых чисел, которую также можно взять в качестве ее определения.

3.1.6. Теорема. Система (К, +, ) есть система целых чисел тогда и только тогда , когда она является кольцом, содержащим полукольцо натуральных чисел {N 9 +, ), причем всякий элемент из К представим в виде разности натуральных чисел, то есть для любого а е К существуют пн п е N такие, что а = т - н .

Доказательство. (=>) Пусть К, +, ) есть система целых чисел мае К. Докажем, что элемент а представим в виде

разности натуральных чисел. По условию 2) из определения 3.1.2, К = Z = N^j{0}kj-N. EcnuaeN, то a = (a + 1)-1; если й g{0}, то а = п-п, где п е N ; если же а е -N , то а = -п и а = 1 - (п +1).

(К, +, ) содержит полукольцо натуральных чисел (N, +, ) и всякий элемент из К представим в виде

разности натуральных чисел. Докажем, что К = ;Vu{0}u-;V = Z. По условию, для любого аеК существуют т,п е N такие, что а = т -п. Но для натуральных чисел т и п имеет место одно и только одно из соотношений: либо т = п + к при некотором к е N , либо т = п , либо п = т + 1 при некотором / е N . В первом случае получаем а = т-п = к е N, во втором а = т - п = 0 € {0}, а в третьем а = т - п = -le -N. ?

Упражнения

  • 1. Приведите примеры полуколец, в которых уравнение вида а + .v = h не всегда разрешимо.
  • 2. Докажите, что в кольце уравнение а+х - b имеет единственное решение.
  • 3. Приведите примеры колец: коммутативных и не коммутативных, с единицей и без единицы, конечных и бесконечных.
  • 4. Во всяком ли кольце сложение обладает свойством сократимости (т.е. из а + с = Ь + с следует а -Ь)1 А умножение (всегда ли из ас = Ьс и с* 0 следует а = ЬУ>
  • 5. Докажите, что изоморфный образ кольца целых чисел есть кольцо целых чисел.
  • 6. Говорят, что кольцо (К, +, ) с единицей е имеет характеристику 0, если для любого п € Л" имеет место неравенство не * 0. Докажите, что в кольце характеристики 0 подмножество {не |« е Z J является подкольцом, изоморфным кольцу целых чисел. Отсюда получаем еще одно краткое по форме определение системы целых чисел: кольцо целых чисел ? это минимальное кольцо характеристики 0.
  • 7. Пусть дано кольцо (К, +, > с единицей е. Элемент аеК называется обратимым , если для него существует обратный элемент а~" такой, что а а~ [ = а "а=е. Докажите, что множество обратимых элементов кольца замкнуто относительно умножения, ему принадлежит единица и для всякого элемента этого множества в нем существует обратный элемент. В силу этих свойств это множество называется мультипликативной группой кольца и обозначается К*. Найдите мультипликативные группы колец (Z, +, > и (?Л+, ).
  • 8. Докажите, что пересечение двух подколец есть подкольцо. Найдите пересечения подколец 2Z и 3Z, 6Z и 15Z, kZ и mZ.
  • 9. Подкольцо // коммутативного кольца (К, +, > называется идеалом, если оно выдерживает умножение на любой элемент кольца, т.е. если для любых h е Н

и к еК произведения kh и hk принадлежат Н . Докажите, что для любых элементов а,а 2 *...»е ЛГ, множество Н = {ka + k 2 (i 2 + -- + k n a n } является идеалом кольца (К, +, ), который обозначается через (д,а 2 »-»я я > (читается: идеал, порожденный элементами Л|,а 2 , а„). При;; = 1 такой идеал называется главным и обозначается (а,). Покажите, что mZ является главным идеалом кольца целых чисел (Z, +, >.

10. Докажите, что в кольце целых чисел всякий идеал является главным. (Указа- н и е. Если Н - ненулевой идеал кольца (Z, +, >, то Н = (т) , где т - наименьшее натуральное число в Я.)

Мы видели, что действия над многочленами сводятся к действиям над их коэффициентами. При этом для сложения, вычитания и умножения многочленов достаточно трех арифметических действий - деление чисел не понадобилось. Так как сумма, разность и произведение двух действительных чисел снова являются действительными числами, то при сложении, вычитании и умножении многочленов с действительными коэффициентами в результате получаются многочлены с действительными же коэффициентами.

Однако не всегда приходится иметь дело с многочленами, имеющими любые действительные коэффициенты. Возможны случаи, когда по самой сути дела коэффициенты должны иметь лишь целые или лишь рациональные значения. В зависимости от того, какие значения коэффициентов считаются допустимыми, меняются свойства многочленов. Например, если рассматривать многочлены с любыми действительными коэффициентами, то можно разложить на множители:

Если же ограничиться многочленами с целыми коэффициентами, то разложение (1) не имеет смысла и мы должны считать многочлен неразложимым на множители.

Отсюда видно, что теория многочленов существенно зависит от того, какие коэффициенты считаются допустимыми. Далеко не любую совокупность коэффициентов можно принять за допустимую. Например, рассмотрим все многочлены, коэффициенты которых - нечетные целые числа. Ясно, что сумма двух таких многочленов уже не будет многочленом того же типа: ведь сумма нечетных чисел - четное число.

Поставим вопрос: каковы «хорошие» множества коэффициентов? Когда сумма, разность, произведение многочленов с коэффициентами данного типа имеют коэффициенты того же типа? Для ответа на этот вопрос введем понятие числового кольца.

Определение. Непустое множество чисел называется числовым кольцом, если вместе с любыми двумя числами а и оно содержит их сумму, разность и произведение. Это выражают также короче, говоря, что числовое кольцо замкнуто относительно операций сложения, вычитания и умножения.

1) Множество целых чисел является числовым кольцом: сумма, разность и произведение целых чисел - целые числа. Множество же натуральных чисел числовым кольцом не является, так как разность натуральных чисел может быть отрицательной.

2) Множество всех рациональных чисел - числовое кольцо, так как сумма, разность и произведение рациональных чисел рациональны.

3) Образует числовое кольцо и множество всех действительных чисел.

4) Числа вида а где а и целые, образуют числовое кольцо. Это следует из соотношений:

5) Множество нечетных чисел не является числовым кольцом, так как сумма нечетных чисел четна. Множество же четных чисел - числовое кольцо.



Похожие публикации