Свойства колец матанализ. Простейшие свойства колец. Кольцо, поле. примеры

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

В различных разделах математики, а также в применении математики в технике, часто встречается ситуация, когда алгебраические операции производятся не над числами, а над объектами иной природы. Например сложение матриц, умножение матриц, сложение векторов, операции над многочленами, операции над линейными преобразованиями и т.д.

Определение 1. Кольцом называется множество математических объектов, в котором определены два действия − "сложение" и "умножение", которые сопоставляют упорядоченным парам элементов их "сумму" и "произведение", являющиеся элементами того же множества. Данные действия удовлетворяют следующим требованиям:

1. a+b=b+a (коммутативность сложения).

2. (a+b)+c=a+(b+c) (ассоциативность сложения).

3. Существует нулевой элемент 0 такой, что a +0=a , при любом a .

4. Для любого a существует противоположный элемент −a такой, что a +(−a )=0.

5. (a+b)c=ac+bc (левая дистрибутивность).

5". c(a+b)=ca+cb (правая дистрибутивность).

Требования 2, 3, 4 означают, что множество математических объектов образует группу , а вместе с пунктом 1 мы имеем дело с коммутативной (абелевой) группой относительно сложения.

Как видно из определения, в общем определении кольца на умножения не накладывается никаких ограничений, кроме дистрибутивности со сложением. Однако при различных ситуациях возникает необходимость рассматривать кольца с дополнительными требованиями.

6. (ab)c=a(bc) (ассоциативность умножения).

7. ab=ba (коммутативность умножения).

8. Существование единичного элемента 1, т.е. такого a ·1=1·a=a , для любого элемента a .

9. Для любого элемента элемента a существует обратный элемент a −1 такой, что aa −1 =a −1 a= 1.

В различных кольцах 6, 7, 8, 9 могут выполняться как отдельно так и в различных комбинациях.

Кольцо называется ассоциативным, если выполняется условие 6, коммутативным, если выполнено условие 7, коммутативным и ассоциативным если выполнены условия 6 и 7. Кольцо называется кольцом с единицей, если выполнено условие 8.

Примеры колец:

1. Множество квадратных матриц.

Действительно. Выполнение пунктов 1-5, 5" очевидна. Нулевым элементом является нулевая матрица. Кроме этого выполняется пункт 6 (ассоциативность умножения), пункт 8 (единичным элементом является единичная матрица). Пункты 7 и 9 не выполняются т.к. в общем случае умножение квадратных матриц некоммутативна, а также не всегда существует обратное к квадратной матрице.

2. Множество всех комплексных чисел.

3. Множество всех действительных чисел.

4. Множество всех рациональных чисел.

5. Множество всех целых чисел.

Определение 2. Всякая система чисел, содержащая сумму, разность и произведение любых двух своих чисел, называется числовым кольцом .

Примеры 2-5 являются числовыми кольцами. Числовыми кольцами являются также все четные числа, а также все целые числа делящихся без остатка на некоторое натуральное число n. Отметим, что множество нечетных чисел не является кольцом т.к. сумма двух нечетных чисел является четным числом.

Аннотация: В данной лекции рассматриваются понятия колец. Приведены основные определения и свойства элементов кольца, рассмотрены ассоциативные кольца. Рассмотрен ряд характерных задач, доказаны основные теоремы, а также приведены задачи для самостоятельного рассмотрения

Кольца

Множество R с двумя бинарными операциями (сложением + и умножением ) называется ассоциативным кольцом с единицей , если:

Если операция умножения коммутативна, то кольцо называется коммутативным кольцом. Коммутативные кольца являются одним из главных объектов изучения в коммутативной алгебре и алгебраической геометрии.

Замечания 1.10.1 .

Примеры 1.10.2 (примеры ассоциативных колец) .

Мы уже убедились, что группа вычетов (Z n ,+)={C 0 ,C 1 ,...,C n-1 }, C k =k+nZ , по модулю n с операцией сложения , является коммутативной группой (см. пример 1.9.4, 2)).

Определим операцию умножения, полагая . Проверим корректность этой операции . Если C k =C k" , C l =C l" , то k"=k+nu , l"=l+nv , , и поэтому C k"l" =C kl .

Так как (C k C l)C m =C (kl)m =C k(lm) =C k (C l C m), C k C l =C kl =C lk =C l C k , C 1 C k =C k =C k C 1 , (C k +C l)C m =C (k+l)m =C km+lm =C k C m +C l C m , то является ассоциативным коммутативным кольцом с единицей C 1 кольцом вычетов по модулю n ).

Свойства колец (R,+,.)

Лемма 1.10.3 (бином Ньютона) . Пусть R - кольцо с 1 , , . Тогда:

Доказательство.

Определение 1.10.4 . Подмножество S кольца R называется подкольцом , если:

а) S - подгруппа относительно сложения в группе (R,+) ;

б)для имеем ;

в)для кольца R с 1 предполагается, что .

Примеры 1.10.5 (примеры подколец) .

Задача 1.10.6 . Описать все подкольца в кольце вычетов Z n по модулю n .

Замечание 1.10.7 . В кольце Z 10 элементы, кратные 5 , образуют кольцо с 1 , не являющееся подкольцом в Z 10 (у этих колец различные единичные элементы).

Определение 1.10.8 . Если R - кольцо, и , , ab=0 , то элемент a называется левым делителем нуля в R , элемент b называется правым делителем нуля в R .

Замечание 1.10.9 . В коммутативных кольцах, естественно, нет различий между левыми и правыми делителями нуля.

Пример 1.10.10 . В Z , Q , R нет делителей нуля.

Пример 1.10.11 . Кольцо непрерывных функций C имеет делители нуля. Действительно, если


то , , fg=0 .

Пример 1.10.12 . Если n=kl , 1

Лемма 1.10.13 . Если в кольце R нет (левых) делителей нуля, то из ab=ac , где , , следует, что b=c (т. е. возможность сокращать на ненулевой элемент слева, если нет левых делителей нуля; и справа, если нет правых делителей нуля).

Доказательство. Если ab=ac , то a(b-c)=0 . Так как a не является левым делителем нуля, то b-c=0 , т. е. b=c .

Определение 1.10.14 . Элемент называется нильпотентным , если x n =0 для некоторого . Наименьшее такое натуральное число n называется степенью нильпотентности элемента .

Ясно, что нильпотентный элемент является делителем нуля (если n>1 , то , ). Обратное утверждение неверно (в Z 6 нет нильпотентных элементов, однако 2 , 3 , 4 - ненулевые делители нуля).

Упражнение 1.10.15 . Кольцо Z n содержит нильпотентные элементы тогда и только тогда, когда n делится на m 2 , где , .

Определение 1.10.16 . Элемент x кольца R называется идемпотентом , если x 2 =x . Ясно, что 0 2 =0 , 1 2 =1 . Если x 2 =x и , , то x(x-1)=x 2 -x=0 , и поэтому нетривиальные идемпотенты являются делителями нуля.

Через U(R) обозначим множество обратимых элементов ассоциативного кольца R , т. е. тех , для которых существует обратный элемент s=r -1 (т. е. rr -1 =1=r -1 r ).

Непустое множество К, на котором заданы две бинарные операции-сложение (+) и умножение ( ), удовлетворяющие условиям:

1) относительно операции сложения К - коммутативнаятруппа;

2) относительно операции умножения К - полугруппа;

3) операции сложения и умножения связаны законом дистрибутивности, т. е. (a+b)с=ас+bс, с(a+b) =ca+cb для всех а, b, c K , называется кольцом (К,+, ).

Структура (К, +) называется аддитивной группой кольца. Если операция умножения коммутативна, т. е. ab=ba. для всех а , b , то кольцо называется коммутативным.

Если относительно операции умножения существует единичный элемент, который в кольце принято обозначать единицей 1,. то говорят, что К есть кольцо с единицей.

Подмножество L кольца называется подкольцом, если L - подгруппа аддитивной группы кольца и L замкнуто относительно операции умножения, т. е. для всех a, b L выполняется а+b L и ab L.

Пересечение подколец будет подкольцом. Тогда, как и в случае групп, подкольцом, порожденным множеством S K, называется пересечение всех подколец К, содержащих S.

1. Множество целых чисел относительно операций умножения и сложения (Z, +, )-коммутативное кольцо. Множества nZ целых чисел, делящихся на п, будет подкольцом без единицы при п>1.

Аналогично множество рациональных и действительных чисел - коммутативные кольца с единицей.

2. Множество квадратных матриц порядка п относительно-операций сложения и умножения матриц есть кольцо с единицей Е - единичной матрицей. При п>1 оно некоммутативное.

3. Пусть K-произвольное коммутативное кольцо. Рассмотрим всевозможные многочлены

с переменной х и коэффициентами а 0 , а 1 , а 2 , ..., а n , из К. Относительно алгебраических операций сложения и умножения многочленов- это коммутативное кольцо. Оно называется кольцом многочленов К от переменной х над кольцом К (например, над кольцом целых, рациональных, действительных чисел). Аналогично определяется кольцо многочленов K от т переменных как кольцо многочленов от одной переменной х т над кольцом K.



4. Пусть X - произвольное множество, К -произвольное кольцо. Рассмотрим множество всех функций f: Х К, определенных на множестве X со значениями в К Определим сумму и произведение функций, как обычно, равенствами

(f+g)(x)=f(x)+g(x); (fg)(x)=f(x)g(x),

где + и - операции в кольце К.

Нетрудно проверить, что все условия, входящие в определение кольца, выполняются, и построенное кольцо будет коммутативным, если коммутативно исходное кольцо K . Оно называется кольцом функций на множестве X со значениями в кольце К.

Многие свойства колец - это переформулированные соответствующие свойства групп и полугрупп, например: a m a n =a m + n , (а т) п =а тп для всех m , n и всех a .

Другие специфические свойства колец моделируют свойства чисел:

1) для всех a a 0=0 a=0;

2) .(-а)b=а(-b)=-(ab) ;

3) - a=(-1)a .

Действительно:

2) 0=a (аналогично (-a)b=-(ab));

3) используя второе свойство, имеем-a= (-a)1 =a(-1) = (-1)a .

Поле

В кольцах целых, рациональных и действительных чисел из того, что произведение ab=0, следует, что либо а =0, либо b =0. Но в кольце квадратных матриц порядка n >1 это свойство уже не выполняется, так как, например, = .

Если в кольце К ab=0 при а 0, b , то а называется левым, а b - правым делителем нуля. Если в К нет делителей нуля (кроме элемента 0, который является тривиальным делителем нуля), то K называется кольцом без делителей нуля.

1. В кольце функции f: R R на множестве действительных чисел R рассмотрим функции f 1 (x)=|x|+x; f 2 (x) =|x|-x. Для них f 1 (x) =0 при x и f 2 (x )=0 при x , а поэтому произведение f 1 (x) f 2 (x) - нулевая функция, хотя f 1 (x) и f 2 (x) . Следовательно, в этом кольце есть делители нуля.

2. Рассмотрим множество пар целых чисел (а, b), в котором заданы операции сложения и умножения:

(a 1 , b 1)+(a 2 , b 2)=(a 1 +a 2 , b 1 +b 2);

(a 1 , b 1)(a 2 , b 2)= (a 1 a 2 , b 1 b 2).

Это множество образует коммутативное кольцо с единицей (1,1) и делителями нуля, так как (1,0)(0,1)=(0,0).

Если в кольце нет делителей нуля, то в нем выполняется закон сокращения, т. е. ab=ac, а =с. Действительно, ab-ac=0 a(b-c)=0 (b-c)=0 b=c.

Пусть К - кольцо, с единицей. Элемент а называется обратимым, если существует такой элемент а -1 , для которого aa -1 =a -1 a=1 .

Обратимый элемент не может быть делителем нуля, так как. если ab =0 , то a -1 (ab) =0 (a -1 a)b=0 1b=0 b=0 (аналогично ba=0 ).

Теорема. Все обратимые элементы кольца К с единицей образуют группу относительно умножения.

Действительно, умножение в К ассоциативно, единица содержится во множестве обратимых элементов и произведение не выводит из множества обратимых элементов, так как если а и b обратимы, то
(аb) -1 =b -1 a -1 .

Важную алгебраическую структуру образуют коммутативные кольца К, в которых каждый ненулевой элемент обратим, т. е. относительно операции умножения множество K \{0} образует группу. В таких кольцах определены три операции: сложение, умножение и деление.

Коммутативное кольцо Р с единицей 1 0, в котором каждый ненулевой элемент обратим, называется полем.

Относительно умножения все отличные от нуля элементы поля образуют группу, которая называется мультипликативной группой поля.

Произведение аb -1 записывается в виде дроби и имеет смысл лишь при b 0 . Элемент является единственным решением уравнения bx=a. Действия с дробями подчиняются привычным для нас правилам:

Докажем, например, второе из них. Пусть х= и у= - решения уравнений bx=a, dy=c. Из этих уравнений следует dbx=da, bdy=bc bd(x+y)=da+bc t= - единственное решение уравнения bdt=da+bc.

1. Кольцо целых чисел не образует поля. Полем является множество рациональных и множество действительных чисел.

8.7. Задания для самостоятельной работы по главе 8

8.1. Определить, является ли операция нахождения скалярного произведения векторов n-мерного евклидового пространства коммутативной и ассоциативной. Обосновать ответ.

8.2. Определить, является ли множество квадратных матриц порядка n относительно операции умножения матриц, группой или моноидом.

8.3. Указать, какие из следующих множеств образуют группу относительно операции умножения:

а) множество целых чисел;

б) множество рациональных чисел;

в) множество действительных чисел, отличных от нуля.

8.4. Определить, какие из следующих структур образует множество квадратных матриц порядка n с определителем, равным единице: относительно обычных операций сложения и умножения матриц:

а) группу;

б) кольцо;

8.5. Указать, какую структуру образует множество целых чисел относительно операции умножения и сложения:

а) некоммутативное кольцо;

б) коммутативное кольцо;

8.6. Какую из перечисленных ниже структур образует множество матриц вида с действительными a и b относительно обычных операций сложения и умножения матриц:

а) кольцо;

8.7. Какое число нужно исключить из множества действительных чисел, чтобы оставшиеся числа образовывали группу относительно обычной операции умножения:

8.8. Выяснить, какую из следующих структур образует множество, состоящее из двух элементов a и e, с бинарной операцией, определенной следующим образом:

ee=e, ea=a, ae=a, aa=e.

а) группу;

б) абелеву группу.

8.9. Являются ли кольцом четные числа относительно обычных операций сложения и умножения? Обосновать ответ.

8.10. Является ли кольцом совокупность чисел вида a+b , где a и b – любые рациональные числа, относительно операций сложения и умножения? Ответ обосновать.

Понятие кольца, простейшие свойства колец.

Алгебра (K , +, ∙) называется кольцом, если выполняются следующие аксиомы:

1. (K , +) – коммутативная группа;

2.
a(b+c ) = ab+ac (b+c )a = ba+ca ;

3. a (bc ) = (ab ) c .

Если операция умножения в кольце коммутативная, то кольцо называется коммутативным.

Пример. Алгебры (Z, +, ∙), (Q , +, ∙), (R , + ,∙) являются кольцами.

Кольцо обладает следующими свойствами: имеет место

1) a + b = a => b = 0;

2) a + b = 0 => b = - a ;

3) – (- a ) = a ;

4) 0∙a = a ∙0 = 0 (0 – ноль кольца);

5) (-a )∙b = a ∙(-b ) = -a b ;

6) (a b )∙c = a c b c , где a – b = a + (-b) .

Докажем свойство 6. (a – b )∙c = (a + (-b ))∙c = a c + (-b )∙c = a c +(-b c )= =a c – b c .

Пусть (K A K называется подкольцом кольца (K ,+,∙), если оно является кольцом относительно операций в кольце (K , +, ∙).

Теорема. Пусть (K , +, ∙) – кольцо. Непустое подмножество A K , является подкольцом кольца К тогда и только тогда, когда
a - b , a b
.

Пример. Кольцо (Q, +, ∙) является подкольцом кольца (А , +, ∙), где A = ={a + b | a , b Q}.

Понятие поля. Простейшие свойства полей .

Определение. Коммутативное кольцо (Р , +, ∙) с единицей, где ноль кольца не совпадает с единицей кольца, называется полем, если
a ≠0 существует ему обратный элемент а -1 , а а -1 = е , е – единица кольца.

Все свойства колец справедливы для полей. Для поля (Р ,+,∙) справедливы также следующие свойства:

1)
a ≠0 уравнение ах = b имеет решение и притом единственное;

2) ab = e |=> a ≠0 b = а -1 ;

3)

c ≠0 ac = bc => a=b ;

4) ab = 0
a = 0 b = 0;

5) ad = bc (b ≠0, d ≠0);

6)
;

.

Пример. Алгебры (Q, +, ∙), (А , +, ∙), где А = {a +b | a , b Q}, (R , +, ∙) – поля.

Пусть (Р ,+,∙) – поле. Непустое подмножество F P , являющееся полем относительно операции в поле (Р ,+,∙) называется подполем поля Р .

Пример. Поле (Q,+,∙) является подполем поля действительных чисел (R,+,∙).

Задачи для самостоятельного решения

1. Покажите, что множество относительно операции умножения есть абелева группа.

2. На множестве Q\{0}определена операция а b =
. Докажите, что алгебра (Q\{0},) является группой.

3. На множестве Z задана бинарная алгебраическая операция, определенная по правилу, а b = а+ b 2. Выясните, является ли алгебра (Z,) группой.

4. На множестве А = {(a , b )
} определена операция (а, b ) (c , d ) = (ac bd , ad + bc ). Докажите, что алгебра (А, ) – группа.

5. Пусть Т – множество всех отображений
заданных правилом
, где а, b Q, a
Докажите, что Т является группой относительно композиции отображений.

6. Пусть А ={1,2,…,n }. Взаимнооднозначное отображение f :
называется подстановкой n – ой степени. Подстановку n – ой степени удобно записывать виде таблицы
, где Произведение двух подстановок
множества А определяется как композиция отображений . По определению

Доказать, что множество всех подстановок n – ой степени является группой относительно произведения подстановок.

7. Выясните, образует ли кольцо относительно сложения, умножения:

a ) N ; b ) множество всех нечетных целых чисел; c)множество всех четных целых чисел; d ) множество чисел вида
где а, b

8. Является ли кольцом множество К ={а +b
} относительно операций сложения и умножения.

9. Покажите, что множество А ={a +b } относительно операций сложения и умножения есть кольцо.

10. На множестве Z определены две операции: a b =a +b +1, ab = ab + a + b . Доказать, что алгебра

11. На множестве классов вычетов по модулю m заданы две бинарные операции:Доказать, что алгебра
коммутативное кольцо с единицей.

12 . Опишите все подкольца кольца
.

13. Выясните, какие из следующих множеств действительных чисел являются полями относительно операций сложения и умножения:

a ) рациональные числа с нечетными знаменателями;

b ) числа вида
c рациональными а, b ;

c ) числа вида
с рациональными а , b ;

d ) числа вида
с рациональными a , b , c .

§5. Поле комплексных чисел. Операции над комплексными

числами в алгебраической форме

Поле комплексных чисел .

Пусть заданы две алгебры (А ,+,∙), (Ā , , ◦). Отображение f : A в(на) >Ā , удовлетворяющее условиям:
f (a +b ) = f (a ) f (b ) f (a b ) = f (a ) ◦ f (b ), называется гомоморфизмом алгебры (А , +, ∙) в(на) алгебру (Ā , , ◦).

Определение. Гомоморфное отображение f алгебры (А , +, ∙) на алгебру (Ā , , ◦) называется изоморфным отображением, если отображение f множества А на Ā инъективно. С точки зрения алгебры изоморфные алгебры неразличимы, т.е. обладают одинаковыми свойствами.

Над полем R уравнение вида x 2 +1 = 0 не имеет решений. Построим поле, которое содержит подполе, изоморфное полю (R ,+,∙), и в котором уравнение вида x 2 +1 = 0 имеет решение.

На множестве C = R × R = {(a , b ) | a , b R } введем операции сложения и умножения следующим образом: (a , b ) (c , d ) = (a + c , b + d ), (a , b ) ◦ (c , d ) = (ac -bd , ad +bc ). Нетрудно доказать, что алгебра (C, ,◦) коммутативное кольцо с единицей. Пара (0,0) – ноль кольца, (1,0) – единица кольца. Покажем, что кольцо (С , ,◦) – поле. Пусть (a , b ) C, (a , b ) ≠ (0,0) и (x ,y ) C такая пара чисел, что (a , b )◦(x , y ) = (1,0). (a , b )◦(x , y ) = (1,0) (ax by , ay + bx ) = (1,0)

(1)

Из (1) =>
,
(a , b ) -1 =
. Следовательно (С, +, ∙) – поле. Рассмотрим множество R 0 = {(a ,0) | aR }. Так как (a ,0) (b ,0) = (a - b ,0)R 0 , (a ,0)◦(b ,0) = (ab ,0) R 0 ,
(a ,0) ≠ (0,0) (a ,0) -1 = (,0) R 0 , то алгебра (R 0, ,◦) – поле.

Построим отображение f : R
R
0 , определенное условием f (a )=(a ,0) . Так как f – биективное отображение и f (a + b )= (a + b ,0) = =(a ,0)(b ,0) = f (a )f (b ), f (a b ) = (a b ,0) = (a ,0)◦(b ,0) =f (a )◦f (b ), то f – изоморфное отображение. Следовательно, (R , +,∙)
(R 0, ,◦). (R 0, ,◦) – поле действительных чисел.

Покажем, что уравнение вида х 2 +1 = 0 в поле (C , , ◦) имеет решения. (х,у ) 2 + (1,0) = (0,0) (x 2 - y 2 +1, 2xy ) = (0,0)

(2)

(0,1), (0, -1) – решения системы (2).

Построенное поле (C , ,◦) называется полем комплексных чисел, а его элементы комплексными числами.

Алгебраическая форма комплексного числа. Операции над комплексными числами в алгебраической форме.

Пусть (С, +, ∙) поле комплексных чисел,
C,
=(a , b ). Так как (R 0 ,+, ∙) (R , +, ∙), то любую пару (a ,0) отождествим с действительным числом a . Обозначим через ί = (0,1). Так как ί 2 = (0,1)∙(0,1) = (-1,0) = -1, то ί называется мнимой единицей. Представим комплексное число
=(a ,b ) в виде: =(a ,b )=(a ,0) +(b ,0) ◦(0,1)=a +b ∙ί. Представление комплексного числа в виде, = а + b ί называется алгебраической формой записи числа . a называется действительной частью комплексного числа и обозначается Re, b – мнимая часть комплексного числа и обозначается Im.

Сложение комплексных чисел:

α = а+ , β = с+ d ί , α +β = (а, b ) + (c , d ) = (a + c , b + d ) = a + c + (b + d )ί.

Умножение комплексных чисел:

α∙β = (a , b )(c , d ) = (a c b d , a d + b c ) = a c - b d + (a d + b c )ί.

Чтобы найти произведение комплексных чисел а+ и с+ d ί , нужно умножить а+ на с+ d ί как двучлен на двучлен, учитывая, что ί 2 = -1.

Частным от деления на β , β ≠ 0 называется такое комплексное число γ, что = γ∙β .

= γ∙β => γ = ∙β -1 . Так как
, то =∙β -1 = =(a , b )∙
Таким образом

Эту формулу можно получить, если числитель и знаменатель дроби умножить на комплексное число, сопряженное знаменателю, т.е. на

с – .

Пример. Найти сумму, произведение, частное комплексных чисел

2+ 3ί , β = 3 - 4ί .

Решение. + β =(2 + 3ί ) + (3 – 4ί ) =5– ί, ∙β = (2 + 3ί) (3– 4ί ) = 6 –8ί + 9ί – –12ί 2 = 18 + ί .

§6. Извлечение корня n -ой степени из комплексного числа в тригонометрической форме

Тригонометрическая форма комплексного числа.

На плоскости в прямоугольной системе координат комплексное число

z = a + будем изображать точкой А (а, b ) или радиусом вектором
.

Изобразим комплексное число z = 2 – 3ί .

Определение. Число
называется модулем комплексного числа z = a + и обозначается | z |.

Угол, образованный между положительным направлением оси Ох и радиусом вектором , изображающим комплексное число z = a + , называется аргументом числа z и обозначается Arg z .

Argz определен с точностью до слагаемое 2πk , .

Аргумент комплексного числа z , удовлетворяющий условию 0≤ < 2π , называется главным значением аргумента комплексного числа z и обозначается arg z .

Из OAA 1 =>a =
cos, b = sin
. Представление комплексного числа z = a + в виде z = r (cos+ ί sin) называется тригонометрической формой записи числа z (r =). Чтобы записать комплексное число z = a + в тригонометрической форме, необходимо знать |z | и Arg z , которые определяются из формул
, cos =
sin =

Пусть z 1 = r 1 (cos φ 1 + ί sin φ 1), z 2 = r 2 (cos φ 2 + ί sin φ 2). Тогда z 1∙ z 2 = =r 1∙ r 2 [(cosφ 1 ∙cosφ 2 – sin φ 1∙ sin φ 2)+i ]= r 1∙ r 2 [(cos (φ 1+ φ 2) + i sin (φ 1+ φ 2)] . Отсюда следует, что |z 1 z 2 | = |z 1 | |z 2 |, Arg z 1 ∙z 2 = Arg z 1 + Arg z 2 .

Arg
Arg– Arg.

Извлечение корня n – ой степени из комплексного числа в тригонометрической форме.

Пусть z C , n N . n – ой степенью комплексного числа z называется произведение
обозначается оно z n . Пусть m =- n . По определению положим, что
z≠0, z 0 = 1, z m = . Если z =r (cosφ + ί sinφ ) , то z n =

= r n (cos + ί sin). При r = 1 имеем z n = cos + ί sin – формула Муавра. Формула Муавра имеет место
.

Корнем n z называется такое комплексное число ω , что ω n = z . Справедливо утверждение.

Теорема. Существует n различных значений корня n –ой степени из комплексного числа z = r (cosφ + ί sinφ ) . Все они получаются из формулы при k = 0, 1, … , n -1. В этой формуле
– арифметический корень.

Обозначим через, ω 0 , ω 1 ,…, ω n -1 – значения корня n -ой степени из z , которые получаются при k = 0, 1, ... , n -1. Так как |ω 0 | = |ω 1 | = |ω 2 |= … =|ω n -1 |,

arg ω 0 = , ω 1 = arg ω 0 +
, … , arg ω n -1 = arg ω n - 2 + , то комплексные числа ω 0 , ω 1 ,…, ω n -1 на плоскости изображаются точками круга с радиусом равным
и делят этот круг на n равных частей.



Похожие публикации